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Kurzfassung

In dieser Arbeit wurden verschiedene state-of-the-art Machine Learning Frameworks
zur Klassifikation von Lungenröntgen implementiert und evaluiert. Die Röntgenbilder
sollen in Bilder klassifiziert werden, die Tuberkulose zeigen oder gesunde Röntgenbilder.
Sowohl traditionelle Merkmalsextraktion als auch verschiedene Deep Learning Frameworks
wurden ausgeführt. Für die Deep Learning Experimente wurden verschiedene, öffentlich
verfügbare, Architekturen, in zwei verschiedenen Versuchen, verglichen. Der erste Versuch
mit Deep Learning umfasste, Convolutional Neural Networks, welche zuvor an einem
anderen Datensatz trainiert wurden, zu verwenden, um Merkmale aus den Lungenröntgen
zu extrahieren. Diese Merkmale wurden dann seperat klassifiziert. Beim zweiten Versuch
wurden wieder, zuvor trainierte, Convolutional Neural Networks verwendet. Diese wurden
vorsichtig erneut mit dem neuen Datensatz der Lungenröntgen trainiert. Die Ergebnisse
der verschiedenen Frameworks wurden zusammengefasst und in Tabellen präsentiert,
sowie evaluiert.
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Abstract

In this thesis different state-of-the-art machine learning frameworks were implemented and
evaluated on chest radiographs to classify them into tuberculotic or healthy radiographs.
Traditional explicit feature engineering was performed, as well as different deep learning
approaches were applied. For the deep learning experiments different publicly available
architectures were compared in two different tasks. The first task with deep learning was
to use a Convolutional Neural Network, already trained on a different task, to extract
features of the chest radiographs. These features were then classified separately. The
second experiment was to use a Convolutional Neural Network, again pretrained on a
different task, and train this network carefully again on the chest radiographs. The
results of the different frameworks were summarized, evaluated and presented in tables.
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CHAPTER 1
Introduction

1.1 Motivation

According to estimates of the annual Global Tuberculosis Report from the WHO [WHO16]
from 2016, there were 1.4 million deaths by the tuberculosis disease in 2015. In 2015
tuberculosis was one of the top 10 causes of death [WHO16]. Another 0.4 million tu-
berculosis deaths occured among HIV-positive people. 10.4 millionen new tuberculosis
incidents were estimated for 2015. Of these, 56% were men, 34% were women and 10%
were children. Studies conducted before medication was available showed that up to 70%
of tuberculosis victims died within the next 10 years.
Thanks to fast diagnosis and proper treatment, most tuberculosis cases can be cured.
Success rates of at least 85% were reported in the cases of which tuberculosis is not drug
resistant.
Since tuberculosis is so widespread and well treatable, it became one of the Sustainable
Development Goals (SDGs) [Uni16] of 2030, issued by the United Nations to end the
epidemic of tuberculosis. To fulfill this goal the WHO developed the End TB Strategy
which is documented in their Global Tuberculosis Report [WHO16] from 2016. They aim
to reduce deaths caused by tuberculosis by 90% from 2015 to 2030.
One of the main parts in this mission is the early diagnosis of tuberculosis of many people.
Therefore, it is helpful to develop a method that can perform a rapid classification of
pulmonary radiographs in healthy and tuberculotic lungs. This program can then be
used in mobile X-ray screenings in areas heavily affected by tuberculosis. This enables
patients to receive treatment at an earlier stage of the disease, which increases the chance
of curing tuberculosis.
In this thesis we present different methods on the task of pulmonary tuberculosis classifi-
cation of chest X-rays. The goal is to find out which of these methods provides the best
results in terms of tuberculosis classification. Our focus is on pulmonary Tuberculosis,
but different forms exist, which affect other organs than the lungs. These forms are
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1. Introduction

summarized under the term extrapulmonary tuberculosis [WHO16].

1.2 Problem Statement
The aim of this thesis is to evaluate how well the classification into healthy and tuberculotic
lungs works, based on chest radiographs only. The framework should be able to classify
different forms of pulmonary Tuberculosis depending on the available data for training.
In order to achieve the best possible results, different machine learning frameworks were
applied and evaluated. The classification of radiographs was chosen because it is the most
commonly used type of medical imaging [Leu99] and it is the first step in Tuberculosis
detection due to its quick availability. To give an example [Dia17], 54% of all diagnostic
images made from march 2016 to march 2017 in England were radiographs. Therefore a
lot of data exists that could be used to train and test the resulting frameworks. This
framework should support doctors in classification and to make their workflow faster. It
could be used in third world countries and with trained staff, to screen many people and
deliver fast, reliable diagnosis to start the appropriate treatment.

1.3 Pulmonary Tuberculosis (TBC)

Figure 1.1: Chest radiographs showing a patient without TBC (left) and a patient with
TBC (right). In the right radiograph manifestations of TBC are visible in the upper
region of the right lung as nodular opacities inside the circle.

Tuberculosis is a disease with an infectious agent [Leu99] caused by the tubercle bacillus
also called Mycobacterium tuberculosis. The transfer of the bacillus takes place by
droplet infection through the air.
The epidemic of TBC is more prevalent in developing countries caused by the poor
sanitary conditions compared to first world countries [Leu99]. As described by the WHO
[WHO16] in 2015 60% of the new TBC incidents appeared in only six countries (India,
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1.3. Pulmonary Tuberculosis (TBC)

Indonesia, China, Nigeria, Pakistan, South Africa).
According to estimates of the WHO in their Global Tuberculosis Report [WHO16] from
2016, there were 1.4 million deaths caused by the tuberculosis disease in 2015. Another
0.4 million tuberculosis deaths were recorded among HIV-positive persons. 10.4 millionen
new tuberculosis incidents were estimated for 2015. 56% of the patients were men, 34%
were women and 10% were children.
To diagnose TBC bacteriologically the following tests exist [WHO16]:

• Sputum Smear Microscopy
Sputum samples are being tested for bacteria under a microscope. This test only
works for pulmonary TBC.

• Rapid Molecular Test
The rapid molecular test gives better results than the sputum smear microscopy. It
is recommended by the WHO for children and adults to diagnose pulmonary TBC
and some types of extrapulmonary TBC.

• Culture Methods
The WHO defines this test as the current reference standard. The disadvantage,
however, lies in the duration of the evaluation, which takes up to 12 weeks.

There are also other tests for drug-resistant TBC.
Leung [Leu99] describes that chest radiographs make it easier to diagnose active or prior
TBC. But the difference of these forms can only be diagnosed on the change of the
radiographs over time. If there are no changes over 4-6 months in the images, the TBC
infection can be considered as inactive. Chest radiographs have the advantage that they
are quickly available compared to the reference standard defined by the WHO, which
takes up to 12 weeks for analysis. Manifestations of TBC on radiographs can get detected
in time and treatment can be started.
In his state-of-the-art report about pulmonary TBC Leung [Leu99] describes the differ-
ences of four forms of pulmonary TBC in chest radiographs depending on age, immune
status and prior active TBC.

Primary TBC

The main characteristic of primary disease are enlarged lymph nodes (Lymphadenopathy)
which occur in 83-96% of cases in children. The percentage decreases for older patients
and can reach as low as 10-43%. Lymphadenopathy can be visible everywhere in the
lung, but most frequently manifests at the right paratracheal and hilar stations.

Postprimary TBC

Most frequently and most characteristic for postprimary disease are parenchymal opac-
ities at the upper lung lobes in 83-85% and at the top of the lower lobes in 11-14%.
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1. Introduction

Tuberculomas are round, sharply separated lesions with a size of 0,5-4,0 cm which appear
in 3-6% of the parenchymal of postprimary TBC patients. Cavitations are visible in
40-45%. Calcified lymph nodes and fibrotic manifestations with an occurence rate of
20-40% indicate the primary presence of TBC.

Miliary TBC

In radiographs this form of TBC manifests itself in many small, 1-3mm, nodules dis-
tributed in the whole lung, which are present in about 30% of cases.

TBC in acquired immunodeficiency syndrome

The progress of the immunosuppression of HIV patients influences the manifestations of
TBC. If the immune function is still nearly normal, it looks similar to the TBC radio-
graphs of patients without HIV. In lungs of patients with HIV more Lymphadenopathy
and less cavitation manifests.

To prevent TBC there is a vaccination [WHO16] that protects children from the in-
fection of some forms of TBC, the Bacille-Calmette-Guérin vaccine, however it has no
effect for adults.
The treatment of an existing active TBC is only possible with drugs. The current
treatment recommended by WHO [WHO16] for TBC that is susceptible to the standard
medication is fixed to 6 months. Other forms of TBC which are resistant to one ore more
active substances need more expensive treatment, which takes about 9-12 months.

1.4 Methodological Approach

The methodological approach of this thesis is to evaluate different feature extraction
methods to obtain the best result in terms of tuberculosis classification in chest radio-
graphs. We want to compare traditional approaches with explicit feature engineering
and classification to recent deep learning attempts on their performance in classification
results and timing.
Firstly explicit feature engineering of different features is performed and then these
features are classified with a Support Vector Machine (see section 4.2.1).
Secondly we use pretrained Convolutional Neural Networks as fixed feature Extractor (see
section 4.2.2) and again classify the extracted features with a Support Vector Machine.
The last approach is to fine-tune a complete Convolutional Neural Network on the TBC
classification task.

1.5 Structure of the Work

Chapter 2 covers the current state of the art in feature engineering and convolutional
neural network approaches. Most of the discussed publications have the same goal
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1.5. Structure of the Work

as this thesis, namely classification of pulmonary tuberculosis in chest radiographs.
Additionally, to get a better understanding of the results, the human performance on
reading radiographs is described. In Chapter 3, a short introduction to the important
datasets relevant to this thesis, can be found. The available TBC dataset for this
thesis to perform classification is described. Furthermore we describe the big labeled
ImageNet dataset which made it possible to use pretrained deep networks with small
datasets. In Chapter 4 the concepts needed for the three implemented approaches of
this thesis are briefly described. These are feature engineering, support vector machines
and convolutional neural networks. In addition, different methods on the application
of convolutional neural networks and the most popular and successful architectures are
mentioned. The technology consisting of hardware and software used in this thesis is
described in Chapter 5. Besides that, the implementation of the three approaches is
explained. Each approach is structured into the steps of preprocessing, feature extraction
and classification. The results of the performed experiments are documented in Chapter 6.
For each approach, the results are presented and a comparison of the best results of all
experiments is provided. The last chapter covers the critical reflection of the implemented
approaches. It draws a comparison with related work and the open issues are discussed.
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CHAPTER 2
State of the art

This chapter provides a brief overview of the current methodology relevant in this thesis
to identify tuberculosis in chest radiographs. Since different methods have been evaluated,
the chapter is structured accordingly to the methods used. Firstly feature engineering is
introduced, which aims to provide an insight into explicit feature extraction, like edge
detection and shape detection. In another step, different deep learning approaches will
be examined. The last part of this chapter will give an overview of human performance.
This information enables us to make a direct comparison of the performance between
experienced humans and the different presented methods.

2.1 Feature Engineering

Most of the available publications concentrate on individual areas of chest radiographs,
for example [AGM98], [vGSL06], [DPU+09]. Apart from these works, there are also some
publications which are particularly concerned with the classification of TBC.

The method of Jaeger et al. [JKC+14] starts with the segmentation of the lung, by
using Graph cut and a predefined lung model. The resulting lung fields are then used
for feature extraction in terms of intensity, gradients, shape, edges and other features.
Afterwards, classification of the features is done by using a Support Vector Machine (see
section 4.2.1). For classification the accuracy is between 78-82,5%, depending on the
used dataset.
Melendez et al. [MvGM+16] introduced their approach on TBC classification in chest
radiographs using a combination of Multiple Instance Learning and Active Learning.
Their approach starts with lung segmentation and feature extraction of texture features
based on the intensity distribution. After the initial classification of the training set, the
most useful images in positive bags are separated into image regions, which are then
classified by an expert. With their approach they reach an Area Under Curve (AUC) of
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2. State of the art

up to 88%.
The publication of Hogeweg et al. [HSM+15] start with segmentation of the lungs like
Jaeger et al. [JKC+14] and Melendez et al. [MvGM+16]. In their approach they place
the focus on the irregularity of the manifestations of TBC. Different subsystems are used,
which classifiy shape and texture features to get different subscores. The combination of
these subsystems to form a total score, is an attempt to reach good generalization. The
best AUC reached by this combination is 86%.

2.2 Convolutional Neural Networks (CNN)

The breakthrough of the CNNs in visual computing was in 2012 with the so-called
AlexNet from Krizhevsky et al. [KSG12]. It won the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC). Since then, researchers attempted to develop
different methods to make use of CNNs. Besides the opportunity to build your own
network it is possible to make use of existing architectures (see section 4.2.2 for more
details).
This section covers approaches on untrained networks as well as networks trained on
the ImageNet dataset (see section 3.2) which were fine-tuned or used as fixed feature
extractor. More details on these methods are available in Chapter 4.

Shin et al. [SRG+16] compared a few different networks, mainly AlexNet [KSG12]
and GoogLeNet [SLJ+15] with each other on the task of interstitial lung disease de-
tection on computed tomography. Tests on the untrained networks and fine-tuning of
the pretrained networks were performed. The training data consists of 905 slices from
120 patients. They achieved an accuracy of 74% on AlexNet and 75% on GoogLeNet
by training the models from scratch with this dataset. They stated that with such a
small dataset it is hard to train big networks. Their results achieved on fine-tuning
the pretrained networks were for AlexNet 86,7% accuracy and for GoogLeNet 90,2%.
Additionally, fine-tuning was performed on OverFeat from Sermanet et al. [SEZ+13]
with an accuracy of 87,7% and on VGG16 from Simonyan et al. [SZ15] with an accuracy
of 90%.
The approach of Hwang et al. [HKJK16] is also based on AlexNet [KSG12] for the
goal of TBC classification in chest radiographs. They also compared the training of the
untrained network with fine-tuning of the pretrained network. Their dataset consists of
10848 images from which 7020 are normal and 3828 have manifestations of TBC. The
data was augmented using random cropping from 520x520 images to 500x500 resolution
and mirroring. AlexNet is trained on input data of size 227x227, so Hwang et al. added
an extra convolutional layer for feature extraction, to make use of their input size of
500x500. By training the AlexNet architecture from scratch with random initialized
weights, they could reach an AUC of 82,8% and an accuracy of 78,8%. With fine-tuning,
they reached an AUC of 96,7% and an accuracy of 90,5%.
The paper of Lakhani et al. [LS17] is again making a comparison of AlexNet [KSG12]
and GoogLeNet [SLJ+15], with untrained weights and pretrained weights, for the clas-
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2.3. Human Performance

sification of TBC in chest radiographs. They had 1007 images, from which 150 were
used for testing (75 TBC positive, 75 healthy), 685 for training and 172 for validation.
Data augmentation was done by resizing to 256x256, converting to Portable Network
Graphics format, random cropping to size 227x227, mean subtraction and mirroring.
With additional augmentation of rotations of 90◦, 180◦, 270◦ and contrast limited adaptive
histogram equalization they were able to further improve their untrained models. Their
best results for untrained networks were an AUC of 90% with AlexNet and an AUC of
88% with GoogLeNet. An ensemble on the best performing fine-tuned GoogLeNet and
AlexNet reached an AUC of 99%.

Another method of making use of Convolutional Neural Networks is to apply already
trained networks as fixed feature extractors.

Shin et al. [SRG+16] also based an approach on this method in their paper. The
only network, this approach was applied to, was AlexNet [KSG12]. The extracted fea-
tures could be classified with an accuracy of 76%.
Razavian et al. [RASC14] used the OverFeat network [SEZ+13] pretrained on Ima-
geNet [JWS+09] for their experiments. Their dataset was the Pascal VOC 2007 dataset
[EEZ+06], consisting of more than 10000 images and 20 classes, which were augmented
using cropping and rotation. The output of the first layer was used as feature vector
with dimension of 4046 for classification. The classification of the feature vector was
accomplished using a Support Vector Machine (see section 4.2.1). Their mean average
precision for all classes was 73,9% without data augmentation and 77,2% with data
augmentation.
The publication of Ginneken et al. [vGSJC15] uses the extracted features of the OverFeat
network for pulmonary nodule detection in CT scans. Their dataset consists of 865 CT
scans with 1147 pulmonary nodules. At first nodule candidates were extracted using a
state-of-the-art nodule detection system. For every candidate and for every x,y,z axis
2D images were extracted from the scans and rescaled to 221x221 resolution. This
patches were used as input for the OverFeat network and the resulting 4096 dimensional
feature vector was then classified with a Support Vector Machine (see section 4.2.1).
The state-of-the-art nodule detection system reached a sensitivity of 68% and could be
improved with the additional usage of OverFeat as feature extractor to 71%.

2.3 Human Performance

To gain an understanding about the quality of the performance of different machine
learning approaches, we present results for the performance of humans who are trained
in reading radiographs in this section.
Jaeger et al. [JKC+14] could get two radiologists for a second and third reading of the
radiographs. Both radiologists were aware of the task of TBC detection in radiographs
and read the images independently. The ground truth of the images was based on clinical
and patient data, to which the radiologists had no access. After the first reading of
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2. State of the art

the images, the radiologists agreed in 84,8% of the cases. For the cases, in which they
disagreed, they decided about the status of the patient together. This collaboration
resulted in detection of all positive TBC cases, therefore a sensitivity of 100% and a
specificity of 68,8%.
Maduskar et al. [MMA+13] had 4 clinical officers, who read the chest radiographs.
These clinical officers had a 3-year diploma in medicine and are trained on the task of
interpreting chest radiographs. No clinical information of the patients was provided.
The images were classified with a score between 0–100, where the score expresses the
confidence of the clinical officers in active TBC. A score bigger than 50 was interpreted
as an abnormal appearance. The AUC for the clinical officers were 89%, 90%, 91% and
92%, the sensitivity 86%, 85%, 83% and 96% and the specificity 88%, 76%, 85% and
46%.

10



CHAPTER 3
Data

This chapter gives a general description of the sample data used in this thesis. First the
TBC dataset is described. Additionally the ImageNet dataset [JWS+09] is introduced,
because it is an important dataset in terms of Convolutional Neural Networks. Thanks
to the big size of the dataset, it is possible to train deep Convolutional Neural Networks
properly. These networks can then be reused on other tasks, with less available data, as
described in section 4.2.2.

3.1 TBC Dataset

Figure 3.1: Example images from the TBC dataset. The three images on the left are
healthy (negative) and the three images on the right are labeled as tuberculotic (positive).

The dataset used in this work has been provided by the industrial partner of this project.
The data has been anonymized, so no clinical, gender or age information can be read
from it. It consists of 1544 digital radiographs of the chest, provided in the DICOM
standard [MEM02]. The size of the images ranges in width from 1832 to 2992 pixels and
in height from 1787 to 2931 pixels. 877 images are labeled as healthy and the other 667
as tuberculotic. The radiographs were labeled, based on the results of Sputum Smear
Microscopy. The tuberculotic images depict different forms of TBC and are not restricted
to one type of manifestation. We have a heterogeneous dataset containing progressive
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3. Data

stages of primary TBC as well as early stages and postprimary TBC. Example images of
this dataset with healthy and tuberculotic lungs are provided in Figure 3.1.
85% of these images are used for training, the other 15% for testing, which results in
1312 images for training and 232 images for testing. The test set is identical for all
implemented methods. For the methods including the training of Convolutional Neural
Networks, 20% of the training set are used for validation of the trained model. This
results in 1049 training images and 263 validation images and, like before, 231 test images.

3.2 ImageNet

Figure 3.2: Visualizations of a branch form the root to the leaf of ImageNet. For each
category, 9 randomly sampled images are presented.

The ImageNet [JWS+09] dataset is important in terms of Convolutional Neural Networks.
It consists of many natural images, which are used for the training of big Convolutional
Neural Networks.
The structure of the dataset is based on the WordNet structure [Fel98]. In the publication
from 2009 [JWS+09] it is stated that the dataset consists of 3.2 million images in 12
subtrees with 5247 different categories. Each category holds 600 images on average.
Current numbers from the ImageNet Homepage [JWS+09] state that the dataset holds
14,197,122 images in 21841 categories.
To obtain better diversity, the labeled objects in the images can be occluded and the
images can include background clutter and show different appearances, positions, view
points, and poses.
The classification of the images was fulfilled by humans with the use of the service of
Amazon Mechanical Turk (AMT). This service is an online platform, which pays users
for the completion of provided tasks. The average precision on the labeling of the images
is 99,7%.
With the creation of this dataset the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) was introduced in 2010 and has been held annually since then. Its aim is to
judge different algorithms for object localization and object detection.
In this thesis we did not use the image data itself, but the weights of Convolutional
Neural Networks trained on this dataset.
In figure 3.2 an example branch is visualized with randomly selected images.
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CHAPTER 4
Methodology

This chapter describes the concepts which are relevant for this thesis, starting with the
description of the method of Feature Engineering and the extracted features in this work.
Afterwards Support Vector Machines as a classification technique are presented. Then
Convolutional Neural Networks are explained, as well as different methods on how to
apply such networks. Additionally different well-known architectures are introduced.
These architectures are AlexNet from Krizhevsky et al. [KSG12], GoogLeNet from
Szegedy et al. [SLJ+15], VGGNet from Simonyan et al. [SZ15] and ResNet from He et
al. [HZRS16].

4.1 Feature Engineering
Feature Engineering is about explicitly extracting features from an image. The approach
implemented and evaluated in this thesis for feature engineering is oriented along the
implementation of feature set A from Jaeger et al. [JKC+14].
Before feature extraction the input data needs to be preprocessed. Common preprocessing
steps are resizing every sample to the same size and perform standardization of the
intensity for each sample. We resized the images using spline-interpolation to a resolution
of 256x256 pixels and then rescaled the intensity to a range of [0, 1].
Additionally segmentation of the important region of the image can be performed. First
a model of the average lung is computed. The lung is then segmented by applying a
graph cut approach by minimizing the objective function:

E(f) = Ed(f) + Es(f) + Em(f)

where Ed stands for the region properties, Es the boundary properties and Em the lung
model properties, as described by Jaeger et al. [JKC+14].
In the next step, the desired features can be computed. Useful features are edges, shape,
intensities, and other texture features.
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4. Methodology

The concepts which were used in this thesis for feature extraction will be briefly described
in the next paragraphs. For each feature descriptor we calculate a histogram. Each bin
of the histogram represents one measurement of the feature. Combining all features from
every descriptor results in our feature vector. This vector will then be classified with a
Support Vector Machine. We use 32 bins per histogram, because Jaeger et al. [JKC+14]
state that empirical experiments showed that this number of bins shows good results.

TheGradient Magnitude of an image is calculated by filtering the image with Gaussian
derivatives. The gradients show the change of intensity in an image. A gradient consists
of two components, the horizontal gradient and the vertical gradient:

∇f =
[
gx

gy

]

The gradient magnitude is the combination of the horizontal and vertical component:

g =
√
g2

x + g2
y

This characteristic is useful for edge detection. As described before, a histogram of the
filtered image is computed afterwards.
For texture classification the Local Binary Pattern descriptor, first described by Ojala
et al. [OPH94], is used. The intensity of a pixel is compared to the intensity of its
neighbours. If the intensity of a neighbouring pixel is greater than the intensity of the
center pixel, ’0’ is written as the intensity of the neighbour, else ’1’. After binary labeling,
a histogram for classification is computed, as part of the Local Binary Pattern algorithm.
Histogram of Oriented Gradients (HOG), first described by McConnell [McC86],
is a descriptor for detection of objects in images. The image is divided into cells. A
histogram of the gradient directions is then computed for each cell. The features for
classification result from the combination of these histograms.
Shape and curvature features were extracted with the Frangi filter based on the
Hessian matrix [FNVV98]. The eigenvalues λ1 and λ2 of the Hessian are extracted to
calculate the shape as follows:

s = tan−1
(
λ1
λ2

)
and the curvature:

c = tan−1


√
λ2

1 + λ2
2

1 + I(x, y)


where I(x, y) is the intensity of the pixel (x,y).
An Intensity histogram of the pixel intensities is computed.

With 6 types of histograms of features - Gradient Magnitude, Local Binary Pattern,
HOG, Shape, Curvature and Intensity - and 32 bins per histogram, we get a total of 6*32
= 192 features for classification.
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4.2 Classification
In this section two approaches to solve the classification problem are presented.
The classification problem is the task of finding the correct label from a predefined set of
categories to an input image. We want to find a function f : X 7→ Y such that the input
images xi ∈ X, i = 1, ..., N are mapped to the corresponding labels yi ∈ 1, ...,M .

In the next paragraphs the Support Vector Machine and Convolutional Neural Networks
are presented. Both are supervised approaches in solving the classification problem.

4.2.1 Support Vector Machine (SVM)

Figure 4.1: Linear classified 2D dataset. The support vectors are visualized with a white
dot in the middle.

The Support Vector Machine [Bur98] is a supervised learning algorithm for classification
of features.
The linear SVM solves the classification problem as a linear function

f(x) = W · x + b (4.1)

where W is a matrix, referred to as weights, and b is a bias vector. For a binary
classification problem, as in this thesis, applying the signum function to the linear
function (4.1)

y = f̂(x) = sgn(W · x + b)

leads to a mapping of the output to 1 or −1. This output can then be interpreted as
class labels.
SVMs are looking for a separation of the data in such a way that the distance between
the datasamples of the different classes is as large as possible. For a linear SVM this
means finding a separating hyperplane, for a non-linear SVM the algorithm is looking for
a decision surface.
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4. Methodology

The name of the SVM results from the so-called support vectors, which are datapoints
that directly influence the decision boundary. If one support vector is removed, the
resulting decision boundary will be different. If all datapoints except the support vectors
are removed, the boundary stays the same. The support vectors additionally have the
characteristic that they are the closest datapoints to the separating hyperplane or surface.
To obtain non-linear decision surfaces a kernel function was introduced [GBC16], which
enabled more efficient calculation. This is done by rewriting the linear function as:

W · x + b = b+
m∑

i=1
αix

ᵀx(i)

where α is a vector of coefficients with mostly zeros. It results from learning which
training samples contribute to the decision surface. x is then replaced with a feature
function φ(x). The kernel function then replaces the dot product

k(x,x(i)) = φ(x) · φ(x(i))

which results in the function

f(x) = b+
∑

i

αik(x,x(i)).

In practice the parameters for SVMs need to be predefined. To find the best parameters
Grid Search can be processed. For a given set of parameters the Grid Search algorithm
tests all possible combinations of parameters on the dataset. These combinations are
then evaluated and the best parameter set is selected for classification.

4.2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks [LKJ] are a special type of Neural Networks. Neural
Networks consist of stacked layers, beginning with an input layer, several hidden layers
and an output layer. Figure 4.2 shows a visualization of this structure. The input is a
single vector. A hidden layer is made of multiple neurons where each neuron of one layer
is connected to each neuron of the previous layer, but there are no connections between
neurons inside one layer. A neuron has weights and biases, as seen in function (4.1),
which can be trained. The output layer is a fully connected layer and outputs the class
probabilities.

CNNs usually take RGB images as input. However, the input must not necessarily be an
image, it just needs to be a matrix. To process this input, the mathematical operation
of convolution is used. The fully-connected structure of Neural Networks is designed
for processing a single vector [GBC16] and would be too complex for an approach on
images. Therefore CNNs have sparse interactions between the neurons, by employing
kernels which are smaller than the input.
Just like regular Neural Networks, CNNs consist of several stacked layers. In figure 4.3 the
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Figure 4.2: Visualizations of the structure of a Neural Network by Li et al. [LKJ].

architecture of the well-known LeNet CNN by LeCun et al. [LBBH98] can be seen. The
most important type of layer is the convolutional layer. In this layer the convolution of
the input image with different filters is computed. A CNN contains multiple convolutional
layers, where each layer has filters, whose complexity depends on the location of the
layer inside the network. Filters of early layers detect low level features like edges and
shapes, whereas later filters are able to detect high level features corresponding to the
given input data. The results of the convolutions of these filters with the input image
are then combined to receive the output of the network. The output is a vector with
class probabilities, where the size of the vector depends on the number of classes.

Figure 4.3: Visualization of the LeNet architecture by LeCun et al. [LBBH98].

Besides the convolutional layer there exist several types of layers with different purposes.
In the tutorial of the Stanford University by Li et al. [LKJ] five types of layers are
presented:

• Input Layer
The Input Layer of CNNs is the input with matrix structure. In most applications
this are images with RGB color channels.

• Convolutional Layer
In this layer the convolution of the input volume with the weights of the neurons
is carried out. The weights are parameters which are learned during the training
phase of the network.
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• Rectified Linear Unit (ReLU) Layer
Per pixel an activation function is applied. For example max(0, x) would set
negative entries to zero. As this is a fixed function, ReLu Layer do not provide
trainable parameters.

• Pooling / Subsampling Layer
The Pooling Layer is responsible for downsampling the input in width and height,
but not in depth. This step is useful to smoothen the image and therefore reduce the
influence of noise. Just like the ReLU layer, this layer has no trainable parameters.

• Fully-Connected Layer
The last layer of CNNs, is the Fully-Connected layer. As mentioned before, in case
of CNNs it outputs the class scores and every neuron in this layer is connected
with each neuron of the previous layer. This layer implements computation using
trainable parameters.

Li et al. [LKJ] additionally describe the typical CNN architecture as repeatedly stacked
Convolutional(Conv)-ReLU layers. They can optionally be followed by Pooling layers
(Pool). The last layer always is a Fully-Connected layer. The following line shows a
typical pattern presented by Li et al.:

Input → [[Conv → ReLU]*N → Pool?]*M → [FC → ReLU]*K → FC

The ? means to add a layer optionally and the ∗ means to repeat the term as often as
specified. N, M and K can be chosen individually, but they need to be natural numbers
including 0.

Training of CNNs

To train a CNN several building blocks need to be considered. These building blocks and
the training process itself will be described in the next paragraphs.

The score function f(x) (4.1) gets raw data as input and outputs the class prob-
abilities. The function has a set of parameter, which can be controlled, or in terms
of CNNs, they can be trained. The goal is to adapt the weights such that the class
probabilities match the ground truth labels as closely as possible.
To obtain this, the loss function is needed. Its task is to determine how good the
prediction matches the ground truth. High loss indicates poor classification, while low
loss shows good classification.
The most popular loss function used with CNNs is the cross-entropy loss with the
form:

L = −
N∑

i=1
(yi log qi)
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where q is estimated using the Softmax function. The Softmax function outputs the
class probabilities between 0 and 1, which sum up to 1.
The process, of finding the weights, which minimize the loss function is an optimization
problem.
The gradient of the loss function indicates the best direction to change the weights. Gra-
dient Descent is the process of regulary performing a parameter update by calculating
and evaluating the gradient.
The issue with gradients is that we do not know how far we have to go into the direction
specified by the gradient. To make any progress we have to set some step size, which we
use to carefully follow the direction of the gradients. This step size is often referred to
as Learning Rate. If we choose a step size which is too small, only small progress is
made. If it is too big, we could step over the optimum.
For better performance, the gradient descent and the parameter update are not performed
for every training sample. It is only performed for batches of training samples.
Backpropagation is the process of calculating the gradients through recursive use of
the chain rule layer by layer of a CNN.

Before the training of a CNN, the training data needs to be preprocessed. The prepro-
cessing of the input data consists of the standardization to get the same range for every
data sample. Additionally, as CNNs are trained for an explicit input size, the input needs
to be resized or cropped to that specified size.
Data Augmentation is as important as the preprocessing step. It helps to find a
model, which provides good generalization for the input data. The augmentation is only
applied on the training set. The test set remains unchanged except for the preprocessing.
Common augmentations of the input are cropping, translations, rotations and flips.
If image cropping is performed, a window of the size which is taken as input of each
network is cut out of a bigger image and used for training. Figure 4.4 shows an example
of cropping 5 different images out of one bigger image.

The training process of a CNN follows a pipeline.
A batch of training samples is passed through the network to obtain class probabilities.
With these probabilities and the labels of the images, the loss is calculated. Backpropa-
gation is then used to calculate the gradient of the loss and afterwards the parameter
update is performed. These steps are repeated until the desired results are obtained.

Different techniques exist to apply CNNs for a specific task. The next subsection
describes the use of untrained networks, also referred to as training them from scratch.
Afterwards different methods for Transfer Learning are presented. Additionally some of
the most popular CNN architectures are introduced.

Training From Scratch

The parameters of a CNN are initialized using Gaussian distribution with a mean of
0 and a standard deviation of 0.01. Training an untrained network from scratch can
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4. Methodology

Figure 4.4: Image cropping: crop images form bottom left (yellow), top left (red), top
right (green), bottom right (blue) and center (black).

be a hard task. For training deep networks like InceptionV3 (see section 4.2.2) a big
dataset is required. One dataset which is big enough to train deep networks is ImageNet
(see section 3.2). Training a deep CNN on ImageNet takes weeks on multiple GPUs
[LKJ]. But not every classification task is similar to images of the ImageNet. If the new,
different dataset is not big enough to train a network from scratch, it can be beneficial
to use pretrained CNNs and transfer the learning from one datasets to a new, different
dataset. This method is described in the next section.

Transfer Learning

Transfer Learning [YCBL14] is accomplished by using pretrained networks. Its aim is to
use the trained parameters of one task for another, new, different task. For most well
known architectures (see section 4.2.2) the weights of the CNNs, trained on different
datasets, are publicly available. These networks are then referred to as pretrained
networks. Most of the available weights have been calculated by training on ImageNet
(see section 3.2). Pretrained CNNs can then be used as either a Fixed Feature Extractor
or the weights can be fine-tuned. Transfer learning is useful due to the fact that CNNs
learn more general, low-level features like edges and shapes in early layers and the more
task specific features in later layers.

Fixed Feature Extraction

Using a CNN as a Fixed Feature Extractor is often also referred to as using off-the-shelf
features. For this task a pretrained network is used. As input the data of a specific,
different, dataset is used. To get class possibilities for the new classes, the network needs
to be modified.
For classification one option is to exchange the last fully connected layer of the used
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network with a layer corresponding to the number of classes, required for the new task.
This new fully connected layer then needs to be freshly trained on the new dataset.
Another possibility is to completely remove the last fully connected layer, then extract
the features for all data and in the end classify these feature vectors with a SVM (see
section 4.2.1).

Fine-Tuning CNNs

Fine-Tuning networks means to train the weigths of a pretrained network again, but with
a lower learning rate for the reason of classifying a different dataset. It has been shown
that more general features, like edges and shapes are learned in every network in early
layers [YCBL14].
To fine-tune the weigths of the more specific layer for the new dataset can therefore yield
better results. All layers can be fine-tuned or only the later specific layer, this depends
on the similarity of the new dataset to the initial training dataset.

CNN Architectures

A wide variety of different CNN architectures with different characteristics exist. This
section provides a short description of the architectures used in this thesis in terms of
classifying a dataset into healthy and TBC images.

The AlexNet architecture from Krizhevsky et al. [KSG12] is the winner of the ImageNet
Large Scale Visual Recognition Challenge 2012 (ILSVRC12) and is visualized in figure 4.5.
This model brought the breakthrough of CNNs in visual computing. The network consists
of five convolutional and three fully-connected layers with a total of 60 million parameters.

The GoogLeNet architecture form Szegedy et al. [SLJ+15] won the ILSVRC14. They
developed a module called ’Inception’ which represents a little network inside the network.
The Inception module could reduce the number of paramaters to 12 times less than
AlexNet. The architecture consists of several stacked Inception modules. GoogLeNet is
22 layers deep. Several improvements resulted in several versions following GoogLeNet.
The improved version of GoogLeNet used in this thesis is InceptionV3 from Szegedy et
al. [SVI+15]. The architecture from InceptionV3 can be seen in figure 4.6.

The VGGNet by Simonyan et al. [SZ15] is another approach, which attempts to increase
the performance by increasing the depth of the network.
As mentioned before, low-level features can be found in earlier layers and specific features
in later layers. This means that with increasing depth even more complex features can
be learned.
The network took part in the ILSVRC14, just like GoogLeNet, which was able to
outperform the VGGNet. The VGGNet resulted from tests in increasing depth between
11 to 19 layer. The best performing models, VGG16 with 16 layers and VGG19 with 19
layers were published. With the deeper models, the number of parameters increased to
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138 million parameters in VGG16 and 144 million parameters in VGG19. In this thesis
VGG16 is used, but VGG19 is visualized in figure 4.7.

The ResNet architecure by He et al. [HZRS16] won the first place at the ILSVRC15.
As complexity increases with the depth of the network, He et al. were trying to improve
learning by introducing skip connections and building deeper models. With a depth of
up to 152 layers it is 8 times deeper than VGG19. They state that their network is
less complex and that they can gain accuracy from the increased depth. In this thesis
we use ResNet50 with a depth of 50 layers and in figure 4.8 ResNet34 with 34 layers is
visualized.
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Figure 4.5: Architecture of AlexNet visualized by Cohen [Coh].
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Figure 4.6: Architecture of InceptionV3 visualized by Shlens [Shl].

Figure 4.7: Architecture of VGG19 visualized by He et al. [HZRS16].

Figure 4.8: Architecture of ResNet34 visualized by He et al. [HZRS16].
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CHAPTER 5
Implementation

In this chapter the implementation of the different approaches is explained. Starting
with the technological setup, the used hardware is described. Additionally the pro-
gramming language and valuable frameworks for deep learning and scientific computing
are mentioned. Then, the implementation of the concepts presented in Section 4 and
their interaction is described. This description is structured according to the different
experiments performed, which are Feature Engineering, Fixed Feature Extraction, and
Fine-Tuning.

5.1 Hardware

The Feature Engineering and Fixed Feature Extraction experiments were performed on a
Intel Core i5 CPU with 32GB RAM and a NVIDIA GeForce GTX 1060 GPU of 3GB
memory. The third experiment - fine-tuning - was executed on a Intel Xeon i5 and an
NVIDIA GeForce GTX TITAN X with 12 GB.

5.2 Software

As programming language Python v3.5.2 was used. The different Convolutional Neural
Network architectures were built and trained with Keras v1.2.0 [Cho15], a Deep Learning
library written in Python. Theano v0.9.0 [The16] was used as backend engine for Keras.
Scientific computation was obtained with the SciPy [Oli07] packages. The core package
NumPy v1.11.1 [VCV11] was used for numerical computation and the SciPy library v0.18.1
[JOP+ ] provided numerical algorithms. For reading and processing the radiographs,
provided as DICOM standard, the python package Pydicom v0.9.9 [Mas11] was utilized.
The Scikit-learn library v0.17.1 [PV11] provided modules for machine learning.
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5.3 Feature Engineering
For explicit feature engineering the classical pipeline of preprocessing, feature extraction
and classification will be executed. The next sections describe the implementation of
these steps, according to the task of TBC classification in chest radiographs.

5.3.1 Preprocessing

As a first step the input images were resized using spline-interpolation to a size of 256x256
pixels. Next the intensities are rescaled to a range of [0, 1].

5.3.2 Feature Extraction

The extraction of the features starts with the segmentation of the lung using an average
lung model and a graph cut approach as described in Subsection 4.1. From the seg-
mented lungs, the features were computed. These are histograms for intensities, gradient
magnitude, local binary pattern, histogram of oriented edges and shape and curvature
descriptors computed for each lung image.
To compute the Gaussian gradient magnitude, σ = 1.0 is used. Local binary pattern is
implemented using radius r = 1 and the number of neighbour set points is 16. For the
histogram of gradients a setting with 8 orientation bins, cell size (4,4) and (1,1) cells in
each block is applied.
These features are then arranged in a matrix and saved for the classification. These steps
follow the pipeline described in Section 4.1.

5.3.3 Classification

For classification SVMs (see section 4.2.1) are used. For a gain in performance, Grid
Search is performed to obtain the best parameters according to the features. This can
be very time consuming, if a lot of parameters are tested, since all combinations are
tried. Therefore only 20% of the training set were used to perform Grid Search on. After
the best parameters were found, these parameters were used to train the SVM from the
beginning on the training data. The parameter used for Grid Search can be found in
Table 5.1.

Parameter Values
Kernel linear, poly, rbf, sigmoid
Degree 2, 3, 4, 5
C 2−7, 2−5, 2−3, 2−1, 21, 23, 25, 27, 29, 211, 213

Gamma 2−15, 2−13, 2−11, 2−9, 2−7, 2−5, 2−3, 2−1, 21

Table 5.1: The parameters used to perform Grid Search.

The set of parameters which obtained the best classification is [Kernel : linear,Degree :
2, C : 2−7, Gamma : 2−15].
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5.4 Fixed Feature Extraction
The Fixed Feature Extraction is the first approach on CNNs. In this experiment the
pipeline of preprocessing, feature extraction, and classification remains preserved.
We perform feature extraction on four different CNN Models, which are AlexNet, VGG16,
InceptionV3 and ResNet50 (see Section 4.2.2). These four networks were chosen, because
they set the state of the art in CNNs in the past years of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) and they are publicly available. All four models
were pretrained on the ImageNet dataset.
Since the different models had different presettings for training the models, the steps,
which are described in the following, can differ depending on the network.

5.4.1 Preprocessing

The first step was to resize the images. This was done according to the input size on
which the networks were trained. AlexNet was trained on an input size of 227x227 pixels,
VGG16 and ResNet50 with 224x224 pixels and InceptionV3 with 299x299 pixels. The
intensity was rescaled to the range of [0, 255] independent from the model. One important
step in the preprocessing that needs to be considered is that the models were pretrained
on the ImageNet dataset, which consists of RGB images. The TBC dataset contains only
grayscale images with one channel. Therefore we tripled the single channel to imitate a
RGB image. The influence of color normalization was tested. The values in Table 5.2
for color normalization are the values which were learned with the ImageNet dataset.
These values were subtracted from the different color channels. The influence of color
normalization on the results is documented in Chapter 6.

Channel Value
R −123, 68
G −116, 779
B −103.939

Table 5.2: Values that were subtracted from the images rescaled to an intensity of [0,
225], referred to as color normalization.

The test data is always directly resized to the according input size of the network and
the intensity is rescaled as described. Additionally, if color normalization was performed
on the training set, it was performed on the test set too. The steps described next, were
only performed on the training data for generalization purposes and are referred to as
data augmentation.

5.4.2 Feature Extraction

In CNNs the features are computed automatically. The only thing that needs to be done
is to extract the computed features from the network. This step is the same, independent
from the CNN architecture. As previously described, the last layer, a fully-connected
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layer, of a network is responsible for classification. As we are not interested in classifying
the chest radiographs in ImageNet classes, this layer is removed. The output of the layer
before classifications are the features of an image. When the architecture is manipulated,
such that features can be extracted, we enter our preprocessed and augmented training
data and save the output of the network a matrix. For all different architectures only
the last fully-connected layer was removed. Subsequently the features were extracted
and classified as described in the next paragraph.

5.4.3 Classification

In this experiment the classification was performed with SVMs, just like in the task of
feature engineering. The procedure stays the same. Grid Search is executed with the
parameters written in Table 5.1 on 20% of the training set for each network. The TBC
dataset is slightly unbalanced with 877 healthy and 667 tuberculotic images. Therefore
as a last experiment the influence of setting class weights for the SVM according to that
imbalance were performed.

5.5 Fine-Tuning
Fine-tuning a CNN was performed on the network, which yielded the best results of the
previous experiments in this thesis. In Chapter 6.2 it can be seen that the InceptionV3
architecture outperformed the other networks on the fixed feature extraction approach.
The advantage of training or fine-tuning CNNs is that the feature computation and
classification of images in one step. The preprocessing and the feature computation and
classification are described in the next paragraphs.

5.5.1 Preprocessing

For fine-tuning InceptionV3 the images are reshaped to 256x256 pixels. The intensity
gets scaled to the range of [0, 255]. As described in the previous experiment, the single
color channel gets tripled, to obtain an imitation of a RGB image. Then all images get
normalized to zero mean and standard deviation 1.
For data augmentation, horizontal flip and random cropping an image of size 227x227
pixels out of the image of size 256x256 pixels was executed.

5.5.2 Feature Computation and Classification

To fine-tune a CNN, weights can be frozen, such that they stay unchanged during the
new training process. The weights get frozen by layer. Also the number of layers that
are fixed are adjustable.
Before starting the training, the last layer of the network needs to be adapted, so it
outputs correct class probabilities.
In this thesis we tested two approaches on fine-tuning. One was to fine-tune all layers of
InceptionV3 with a low learning rate. The other approach was to only load the weights
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of the first 5 of 11 Inception modules and initialize the other weights randomly. This
model was trained with a low learning rate as well.
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CHAPTER 6
Results

In this chapter all results from the implemented approaches are documented and described.
Different tests of each approach are compared. The discussion of the results is provided
in chapter 7.

6.1 Feature Engineering

In Table 6.1 precision, f1-score, recall and AUC of the feature engineering approach are
presented. These results were obtained by computing histograms of different features.
The extracted features were the gradient magnitude, local binary pattern, histogram of
oriented gradients, shape and curvature and the intensity, as described in Section 4.1. A
comparison with related work can be found in Chapter 7.

F1-Score Precision Recall AUC
0, 66 0, 67 0, 67 0, 70

Table 6.1: Feature Engineering results

6.2 Fixed Feature Extraction

For each of the CNN architectures we tested - AlexNet, VGG16, InceptionV3, and
ResNet50 - we provide a table containing the results of TBC classification. Each
experiment was tested on every model to ensure comparability. The influence of color
normalization and setting class weigths were tested.

The results for AlexNet are in Table 6.2. The best result, highlighted in bold, was
obtained without any preprocessing or augmentation. Color Normalization of the data
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Data Augmentation F1-Score Precision Recall
without color normalization 0,73 0,73 0,73
with color normalization 0, 71 0, 71 0, 72
class weights 0, 72 0, 71 0, 72

Table 6.2: AlexNet Fixed Feature Extraction results.

yielded 1-2% less precision, just like trying to balance the class weights in classification
with the SVM.

Setting class weights for the training of the SVM did not make any difference on
the classification with VGG16. Color normalization slightly worsened the results, as
documented in Table 6.3.

Data Augmentation F1-Score Precision Recall
without color normalization 0,85 0,85 0,85
with color normalization 0, 84 0, 85 0, 84
class weights 0,85 0,85 0,85

Table 6.3: VGG16 Fixed Feature Extraction results.

With InceptionV3 as fixed feature extractor, the best results (see Table 6.4) were ob-
tained using color normalization. This is because the network was pretrained on the
ImageNet dataset using color normalization. Adding class weights had no influence on
the performance. Without color normalization the networks precision is 3% worse than
with color normalization.

Data Augmentation F1-Score Precision Recall
without color normalization 0, 83 0, 83 0, 83

with color normalization 0,86 0,86 0,86
class weights 0,86 0,86 0,86

Table 6.4: InceptionV3 Fixed Feature Extraction results.

ResNet50 was the last architecture that was evaluated and the results are in Table 6.5.
With class weights, recall and f1-score, could be increased by 2%. Color normalization
had nearly no influence on the result, precision is 1% better without color normalization.
The other metrics stay unchanged.

Different results originate from the different architectures. In the different years of the
ImageNet Large Scale Visual Recognition Challenge the presented networks were getting
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Data Augmentation F1-Score Precision Recall
without color normalization 0, 72 0, 75 0, 73

with color normalization 0, 72 0, 74 0, 73
class weights 0,74 0,75 0,75

Table 6.5: ResNet50 Fixed Feature Extraction results.

better year per year (see section 4.2.2). This trend is visible in our results, but for our
data InceptionV3 gave the best results.

6.3 Fine-Tuning

Table 6.6 contains the results of the two main fine-tuning experiments performed in
this thesis. For each dataset - training, validation and test - the F1-Score, Precision
and Recall were calculated and additionally for the validation and test set the AUC is
available. The results of the test set are highlighted in bold for each experiment.
As described in Section 5.5 InceptionV3 was fine-tuned. Fine-Tuning-11 refers to the
approach on fine-tuning all 11 Inception modules of the network pretrained on ImageNet.
For Fine-Tuning-5, only the weigths up to the fifth Inception module were kept while the
other layers were randomly initialized and then the network was trained again. Both
experiments were executed with the same learning rate.
As the related publications use the AUC as performance metric, we specify Fine-Tuning-5
as the better model, because it has the better AUC and compare it in Section 7.2.3 with
related work.

Model F1-Score Precision Recall AUC
Fine-Tuning-11 training 0, 75 0, 77 0, 74 -

Fine-Tuning-11 validation 0, 51 0, 62 0, 44 0, 75

Fine-Tuning-11 test 0,63 0,73 0,55 0,78
Fine-Tuning-5 training 0, 78 0, 78 0, 81 -

Fine-Tuning-5 validation 0, 66 0, 64 0, 68 0, 81

Fine-Tuning-5 test 0,66 0,67 0,65 0,79

Table 6.6: InceptionV3 Fine-Tuning results.

The loss functions of the models are presented in Figure 6.1.The blue curve visualizes
the training loss and the green curve the validation loss. Both loss functions show a
promising curve, as the loss is always decreasing and does not start to increase, which
indicates a well chosen learning rate. A low learning rate would be visible as linear
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function, very high learning rates appear similar to exponential functions [LKJ].

Figure 6.1: Plot of the loss function of Fine-Tuning-11 (left) and Fine-Tuning-5 (right).
The loss function of the training set is visible in blue and the loss function of the validation
set is visible in green.

In Figure 6.2 the AUC curve of the models over the epochs can be seen. The blue curve
is the AUC of the validation set and the green curve the AUC of the test set. As the
AUC curves in the right figure of the validation and test set are very similar it indicates
that this model (Fine-Tuning-5) has a better generalization.

Figure 6.2: Plot of the AUC function of Fine-Tuning-11 (left) and Fine-Tuning-5 (right).
The AUC of the validation set is visible in blue and the AUC of the test set is visible in
green.

The advantage of Fine-Tuning-5 is that the later layers of the pretrained network with
very specific features on natural RGB images do not have any influence as the weights
are initialized randomly. The pretrained layers need more training and data to perform
better on the TBC task compared to randomly initialized weights.
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CHAPTER 7
Critical reflection

This chapter provides a critical reflection of the presented implementation and results.
We summarize and compare the results of the different approaches implemented in this
thesis. Then we compare the implementation and results with related publications in
Section 7.2. In Section 7.3 open issues will be discussed.

7.1 Comparison of our Approaches

In Table 7.1 the results achieved in the different experiments of this thesis, are presented.
The best result is highlighted in bold. Overall it can be observed that the best results
were achieved using CNNs as fixed feature extractor and SVMs for classification.
One advantage of the fixed feature extraction approach is the classification with SVMs
instead of the last fully-connected layers of CNNs. SVMs can outperform the classification
part of CNNs. Huang et al. [HL06] showed that the combination of the advantages of
SVMs and CNNs can result in better performance. With pixel-classification by SVMs
they reached an error rate of 43,3%, with a CNN 7,2% and with the combination of
both 5,9%. The performance gain results from the characteristics that CNNs are good at
learning features, while SVMs are good in finding decision surfaces. This combination
provided good performance for us too.
Another fact is that less data is needed to only train a SVM than to train or fine-tune a
whole CNN. Still, we were able to benefit from well-trained feature extractors. So with
little data, more effective classifications can be achieved with SVMs.
It has been shown before in multiple publications that the traditional approach of feature
engineering can be outperformed with CNNs. For example Shin et al. [SRG+16] set the
state-of-the-art on mediastinal lung nodule detection with fine-tuning CNNs. Lakhani et
al. [LS17] also used fine-tuning to set the state-of-the-art in TBC classification.
This is because the features, which were selected to be extracted for classification with
feature engineering, are focused on different types of appearances of TBC. However, this
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does not mean that these extracted features are the best for classification. CNNs learn to
extract the best features relevant to the task and then use these for classification. This is
one main advantage of CNNs compared to traditional implementations.
In our approaches, we could not outperform the fixed feature extraction with fine-tuning,
as stated by others, e.g. Shin et al. [SRG+16]. The reason for this is our dataset. We
have a small dataset with heterogenous data containing different forms of TBC, like
early stages of active TBC, which are hard to detect. With another network architecture,
which is smaller than InceptionV3 and therefore needs less data to train, we probably
could have obtained better results with the current dataset.
One key characteristic of CNNs is that they need long time to train, but after training,
classification of a single image is achieved very fast, since the network already learned,
what parts of the images are relevant for classification.

Model F1-Score Precision Recall AUC
Feature Engineering 0, 66 0, 67 0, 67 0, 70
AlexNet 0, 73 0, 73 0, 73 0.71

VGG16 0, 85 0, 85 0, 85 0, 84

InceptionV3 0,86 0,86 0,86 0,85
ResNet50 0, 74 0, 75 0, 75 0, 73
Fine-Tuning-11 0, 63 0, 73 0, 55 0, 78

Fine-Tuning-5 0, 66 0, 67 0, 65 0, 79

Table 7.1: Summary of the best results of the different approaches used in this thesis.

7.2 Comparison with Related Work

In this section we try to draw a comparison with related publications. Therefore it is
structured according to the different conducted experiments.

7.2.1 Feature Engineering

Our approach on feature engineering is based on the publication of Jaeger et al. [JKC+14].
Still we cannot draw a direct comparison with their approach, because we have a different
dataset. Nevertheless we compare our results with the results of Jaeger et al. in the
following paragraph.

The big difference in performance between this implementation and the implementation
of Jaeger et al. results from the dataset. Jaeger et al. used publicly available datasets -
Montgomery County chest X-ray set and Shenzen chest X-ray set. As stated by Jaeger
et al. [JCA+14], these datasets only contain progressed stages of TBC, which are easily
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detectable in radiographs. Our heterogenous dataset contains different types of TBC,
hard detectable early stages of active TBC too. Jaeger et al. had less data samples (753)
than we had in this thesis (1544). They showed the influence of different datasets on
the performance in their publication. On the feature set A, which is most similar to our
approach, a difference of up to 1.1% in AUC resulted from two different datasets.
Melendez et al. [MvGM+16] proposed a different approach using Multiple Instance
Learning and Active Learning. As they state, the advantage of using Multiple Instance
Learning is that the outlines of manifestations do not need to be found accurately as in
traditional approaches.
The publication of Hogeweg et al. [HSM+15] is more focused on the generalization of
different manifestations of TBC as described in section 2.1. They use different subsystems
for different features and then combine them.
All the publications related to our approach show similar performance.

Publication AUC
Feature Engineering 0, 70
Jaeger et al. [JKC+14] 0, 87
Melendez et al. [MvGM+16] 0, 88
Hogeweg et al. [HSM+15] 0, 86

Table 7.2: Summary of the best results of Feature Engineering of this and related work.

7.2.2 Fixed Feature Extraction

We could not find any related publications on the TBC classification task that used fixed
feature extraction. The publication of Shin et al. [SRG+16], which covers the task of
lung nodule detection, only states that fixed feature extraction yields worse results than
fine-tuning CNNs. As seen in Table 7.1, we could not verify this statement. With more
data we maybe could have gotten similar findings. With little data the approach of fixed
feature extraction seems to be more effective.

7.2.3 Fine-Tuning

The state-of-the-art in TBC classification was set by Lakhani et al. [LS17] by fine-
tuning AlexNet and GoogleNet pretrained on ImageNet and then combine the models
for classification. They reached an AUC of 98% with each architecture and an AUC of
99% with an ensamble of GoogLeNet and AlexNet. Hwang et al. [HKJK16] published
their results on fine-tuning AlexNet with an AUC of 96,7%.
The main advantage of Hwang et al. compared to the presented work in this thesis and
the publication of Lakhani et al. is the size of their dataset. With 12.648 images their
dataset was much bigger than the dataset of Lakhani et al. with 1007 images and the
dataset used in this thesis with 1544 images. Especially when training CNNs this can
be a big gain. This amount of data is the main reason for a better performance in their
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publication compared to the presented approach.
Another reason could be that they used input data with a higher resolution of 500x500
pixels compared to the approach in this thesis and of Lakhani et al. [LS17] with 227x227
pixels. They used the same data augmentation as in this thesis, random cropping and
horizontal mirroring.
Despite the small dataset, Lakhani et al. [LS17] were able to outperform the publication
of Hwang et al. [HKJK16]. They used more aggresive data augmentation for performance
gain and they put emphasis on a balanced dataset with 492 tuberculotic and 515 healthy
images. Additionally to random cropping and mirroring they used rotations of 90◦, 180◦

and 270◦ and contrast limited adaptive histogram equalization. Their approach with
fine-Tuning AlexNet outperformed Hwang et al. with a gain of 1,3% in AUC.
One advantage in training GoogLeNet compared to AlexNet, especially when only a
small dataset is available, is the smaller number of trainable parameters. This does not
seem to make any difference in the approach of Lakhani et al., as they could reach similar
AUC on both architectures.
It is hard to compare the performance of CNNs, as it mainly depends on the dataset
used for training and testing. Lakhani et al. use publicly available datasets, which
where reviewed multiple times. These public datasets therefore contain less heterogenous
data, consisting of radiographs with progressed stages of TBC, which are easier to detect
[JCA+14]. The dataset in this work directly comes from a hospital. It is a heterogenous
dataset, which contains different types of TBC. It contains early stages of TBC as well,
which are hard to detect using radiographs only.

Publication AUC
Fine-Tuning-5 0, 79

AlexNet Hwang et al. [HKJK16] 0, 967

AlexNet Lakhani et al. [LS17] 0, 98

GoogLeNet Lakhani et al. [LS17] 0, 98
Ensemble Lakhani et al. [LS17] 0, 99

Table 7.3: Summary of performance of fine-tuning a CNN of this and related work.

7.3 Discussion of Open Issues

The main unresolved issue in the TBC classification with CNNs is the data acquisition.
As CNNs depend on the dataset, it is important to have a big dataset, which is as
diverse as possible and compatible with the given task. A bigger dataset is necessary for
generalization and performance gain. Additionally, big, publicly available, datasets are
important to objectively compare different approaches.
Especially for a small dataset - like the one used in this thesis - it could be benficial to use
a network with a small number of parameters for fine-tuning. For example GoogLeNet
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with 5 million parameters could yield better performance, as overfitting should be easier
to prevent.
Lakhani et al. [LS17] achieved a performance gain by combining different good working
models for the task. The combination of different models is an open issue of this thesis.
Applying pretrained CNNs as fixed feature extractor could be interesting when extracting
features at different layers. As it has been mentioned in this thesis more general features
are found in earlier layers. Therefore it could be useful to extract more general features
at earlier layers and classify them afterwards. Testing the features of different layers
could also provide information for fine-tuning, as one can find out at which layer the
features start to get specific for the pretrained task. Additionally compositions of feature
extraction models, which extract different features at a different layer could be worth a
try.
Another open issue is to adapt the SVM, such that the gradients can be backpropagated
and lower level features can be learned as described by Tang et al. [Tan13].
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